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Overview:

A new GC-APCI source coupled to a high-resolution Q-TOF-MS was used
for the GC/MS analysis of PAH, pesticide and explosive standards and of
soil, sediment and sludge samples of enviror | origin. Compared to
an earlier GC-APCI design we observed improved GC/MS performance
regarding reproducibility and analytical working range.

Introduction:

While electron ionization GC/MS has been used for more than 40 years in
environmental analytical chemistry, the use of GC-APCI-MS has gained
more interest in the last several years [1-3]. GC-APCI is a flexible
atmospheric pressure chemical ionization source that can produce lower
detection limits than electron ionization and in combination with high-
resolution MS enables the identification of unknown analytes: The soft
APCl ionization preserves the molecular ion information and allows the
identification of trace contaminations or degradation products which
could not yet be identified due to missing library data or missing
standards.

In the present study we used a new GC-APCI |l source. The source
consists of an APC| source chamber equipped with a corona discharge
needle assembly and a flexible heated GC transfer line. While other GC-
APCI sources use a fixed GC-transfer line design the GC-APCI |l source
allows easier handling of the GC and a quicker exchange of the
chromatography type, e.g. from GC to LC source and GC to LC
chromatographic system (and vice versa). Compared to earlier designs
the GC-APCI Il source was further developed in the following respect:

® The whole source was designed much tighter to exclude uncontrolled
gas exchange with the outside air and to control the water content in
the ion source,

®= The APCI vaporizer heater used in the previous design is omitted

within the GC-APCI Il ion source, thus suppressing gas turbulences

due to a high vaporizer gas flow.

The heat required for the APCI process is generated in close vicinity to

the ionization region and is preserved there by shielding the ionization

region from the outer source area.

= All gas flows within the ion source were optimized to reduce
turbulences and to guide the GC eluent flow into the ion source.

Finally this source supports also a mass calibration module which allows
automatic MS calibration by injecting PFTBA calibration gas into the ion
source chamber during each GC/MS run.
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Fig. 1: Scheme of the
GC-APCI Il ion source.

The GC-effluent is directed from
the GC transfer line (left) into the
APCI region of the ion source.
Mechanical design, gas flows, heat
distribution and electrical fields are
optimized for efficient AP chemical
ionization and ion transfer into the
MS inlet.

The GC-APCI Il source is equipped
with an automatic calibration gas
module that flushes calibration gas
into the APCI region.
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Methods:

Standard solutions of polycyclic aromatic hydrocarbons (PAH Calibration
Mix, Sigma No. 4-7940-V), of a pesticides mixture containing 60
pesticides [5] and of explosives {Combined Stock Solution, Ultra Scientific
No. NAIM-833E) were diluted in dichloromethane to appropriate
concentrations for the generation of calibration curves between 0.5 and
500 paful, respectively 1 ng/ul for the explosives, Soil samples were
extracted in quick solid-liquid extraction procedures using acetone and
sonication. Sediment samples were used as provided. The sludge sample
was extracted in methanol, centrifugated and diluted in dichloromethane.
For all analyses one pl of each sample was injected into the GC.

GC/MS analysis was performed using a Bruker 450-GC with PAL Combi-
xt Autoinjector and a, impact Q-TOF mass spectrometer or an impact HD
Q-TOF-MS (both Bruker Daltonics). The GC was operated with a 30 m
BR-5ms FS capillary column (0.25 mm 1D, 0.25 pm film thickness),
operated at 1 ml/min constant helium flow and a GC oven temperature
program at 50°C (1 min) - 10°C/min - 290°C (5 or 15 min). Splitless
injection was at 250°C. Data were acquired from 50 - 1000 m/z at 6
spectra per second, operated in the positive and in the negative ionization
mode. Spectra were externally calibrated using PFTBA as calibration gas
injected automatically into the APCI source at the beginning of each MS
run. DataAnalysis and TargetAnalysis software (Bruker Daltonics) was
applied for peak detection and data evaluation.

Results:

The idea of this feasibility study was to test the applicability of the new
GC-APCI Il source with different classes of environmental target
compounds in positive and in negative ionization mode. We therefore
selected PAHs as unpolar and pesticides and explosives as polar
chemical compounds to demonstrate the broad applicability. Before the
analyses of some selected samples we analyzed a series of calibration
standards with N=3 replicates.
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Fig. 2: EICs of PAHs and alkyl-substituted PAHs in the extract of a
ksediment sample (#534537); conc. are in the 100 pg/ul range. _}

In previous applications we had tested various pesticides (> 800) with
LC/ high-resolution Q-TOF-MS where we selected a representative

Additionally, 16 PAHs were calibrated in the positive ionization mode and
we found LLOQs {lower limits of quantification) in the low pg/ul range.
Analytical results are consistent to another recent GC-APCI Il study
where we used a Restek Rxi-PAH capillary column with superior GC-
separation and therefore found better S/N values and an factor of ca.
f=10 lower LLOQs for the PAHs [unpublished results).The calibration was
used to quantify PAHs in the liquid extract of some sediment samples
containing a complex mixture of PAHs and alkyl-chain substituted PAHs
{Fig.2}.

Finally, GC-APCI/MS was applied for the guantification of aromatic
explosives. Most of these compounds are preferably analyzed in the
negative ionization mode but due to the inherent instability of this
compound class mass spectra are very complex with a lot of

Here we reported the application of a novel GC-APCI |l ion source for the

igation of standards and samples of environmental origin at impact
and an impact HD Q-TOF-MS.

* We demonstrated improved GC-APCI IIfTOF-MS performance for the
calibration of PAH, pesticide and explosive standards and for the
quantification of some environmental samples in the negative and in the
positive ionization mode.

fragmentation in negative APCI. The calibration in the conc ion range
of 1 to 1000 pgful was applied to the quantification of a soil sample from
a farmer WW Il explosive praduction plant identifying several production
by-products and {microbiological) degradation products (Fig.4).

* Reproducibility and quantification results are very satisfying: the analytical
{linear) working range was about > 2.7 orders of magnitude at linearities
better than R? > 0.99 for nearly all target compounds
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Fig.4: GC/MS run of a liquid extract of an explosive soil sample: main
it is TNT, but also the by-products from the production pro-
cess as well as degradation products were found.

mixture of B0 pesticides of high relevance for analytical r ing le.g.

were found by GC/MS; substances are listed in order of elution. (A EIC = 5§ mDa)

* We observed better lower limits of quantification (LLOQs) for most of the
standards due to reduced chemical background in the ion source.

And finally we observed excellent mass accuracy in the low one-digit
ppm range or even below.

= Based on this feasibility study we will extend this work for a broader
range of pesticides and for the negative ionization mass spectra of
explosives.
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